
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All
rights reserved.

General Class Topics

General class topics already covered:

public/private, get/set, overloading constructors,
static, this

Need to cover:

 Finalize

 Aggregation

 Composition

 Inheritance

© 2023 Arthur Hoskey. All
rights reserved.

finalize()

finalize()

 Method called when an object is actually garbage
collected.

 An object may become a candidate for garbage collection
(unreferenced) but it will not actually have its finalize()
method called until the garbage collector gets around to
reclaiming that area of memory (could happen immediately
or it could take a long time).

finalize() can be used for “clean up” code although it may not
be the best choice due to the uncertainty of when it gets
called.

What should you put in finalize()???

Code that would close an open file.

© 2023 Arthur Hoskey. All
rights reserved.

Aggregation

 Aggregation: "Has-a" relationship.

 Aggregation is a form of code reuse.

 One class has other classes as members variables (we’ve already
seen this).

 For example, a class called Company has Employee member
variables.

 One class has another class as part of it ("has a" relationship).

 Much better than copying and pasting code (copying and pasting
code is NOT code reuse from an object-oriented design
perspective).

© 2023 Arthur Hoskey. All
rights reserved.

Aggregation

 Take a look at the following class:
public class Student {

private int m_Id;

public Student(int newId)

{ m_Id = newId; }

public int GetId()

{ return m_Id; }

public void SetId(int newId)

{ m_Id = newId; }

}

© 2023 Arthur Hoskey. All
rights reserved.

Aggregation

public class Course

{

private Student[] m_Students;

// Get/Set methods and constructor(s)

}

 A course "has a" student.

 A course is made up of students.

© 2023 Arthur Hoskey. All
rights reserved.

Aggregation

Course has a

Student as a

member variable

Aggregation

 Aggregation is good because we are using
code that is already written.

 No need to duplicate something that has
already been done.

© 2023 Arthur Hoskey. All
rights reserved.

Composition

 Composition: "Has-a" relationship.

 Composition is a form of code reuse.

 Composition is a special form of aggregation.

 With composition, if the containing object is destroyed then the
contained object is also destroyed.

 For example, think about the classes building and room. A
building "has a" room.

 Building and room is composition because if the building is
destroyed, then the room is also destroyed.

© 2023 Arthur Hoskey. All
rights reserved.

Aggregation vs Composition

 Aggregation Example: Course "has a" student. It is not
composition because if the course is destroyed the student
still exists. The existence of the student is not dependent
on the course existing.

 Composition Example: Building "has a" room. The room
only exists if the building exists.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 Now on to inheritance…

© 2023 Arthur Hoskey. All
rights reserved.

Employee Class

 Employee will be used in following examples:

public class Employee {

private int m_Id;

public Employee(int newId)

{ m_Id = newId; }

public int GetId()

{ return m_Id; }

public void SetId(int newId)

{ m_Id = newId; }

}

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 What if we wanted to create a Manager
class.

 A manager is also an employee, so it also
needs an id member.

 In addition, a manager has a secretary.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 Take a look at the following class:

public class Manager {

private int m_Id;

private String m_SecretaryName;

public Manager(int newId, String secName)

{ m_Id = newId; m_SecretaryName = secName; }

// Id get/set methods should go here…

// SecretaryName get/set methods should go here…

}

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 We had to duplicate the members of the
Employee class to create the Manager class.
Becomes a problem for big classes.

 It would be better if we could somehow use the
employee class instead of copying all of its code.

 A manager is an employee.

 Managers are special types of employees.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 What is inheritance?

 Inheritance is a form of code reuse.

 Create a new class from an existing class.

 Use an existing class as a "base" for the new class.

 The new class adds on to the existing class.

 Again, this is much better than copying and pasting code
(copying and pasting code is NOT code reuse from an object-
oriented design perspective).

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 The new class should "inherit" from an
existing class.

 Now we can use inheritance to create the
Manager class.

 The Manager class will inherit from the
Employee class.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 How do we implement inheritance in
Java?

 Revisit Employee and Manager classes.

 This time we will use inheritance to create
the Manager class.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

public class Employee

{

private int m_Id;

public Employee(int newId)

{ m_Id = newId; }

public int GetId()

{ return m_Id; }

public void SetId(int newId)

{ m_Id = newId; }

}

There are no

changes to the

Employee class.

The Manager class

will just add to it

without changing it.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

class Manager extends Employee

{

private String m_SecretaryName;

public String GetSecretaryName()

{ return m_SecretaryName; }

public void SetSecretaryName(String newSecName)

{ m_SecretaryName = newSecName; }

}

Adds to the Employee class.

m_Id is part of the class

because of “extends”.

© 2023 Arthur Hoskey. All
rights reserved.

Only allowed to

directly inherit

from 1 class

Inheritance

We could also extend the Employee class in
a different way if we want.

For example…

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

class SalaryEmployee extends Employee

{

private double m_YearlySalary;

public SalaryEmployee(double newSal)

{ m_YearlySalary = newSal; }

public double GetYearlySalary()

{ return m_YearlySalary; }

public void SetYearlySalary(double newSal)

{ m_YearlySalary = newSal; }

}

Also inherits from

Employee but “extends”

in a different way.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

Terminology

 The new class is the "derived" class.

 The class that is being inherited from is
the "base" class.

 The "derived" class inherits from the
"base" class.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

More Terminology

 The existing or base class is also called
the "super" class.

 The new or derived class is also called a
"sub" class.

© 2023 Arthur Hoskey. All
rights reserved.

Example Problem

1. Write down some example classes that could be
derived from the following base classes:

a. Shape

b. Loan

c. Employee

2. Come up with your inheritance hierarchy (base
and derived classes).

Take attendance!!!

© 2023 Arthur Hoskey. All
rights reserved.

Answers

 Inheritance Examples:

Base or
Superclass

Derived or Subclass

Animal Cat, Dog, Horse, Bear, Lion

Shape Circle, Triangle, Rectangle

Loan CarLoan

Employee SalaryEmployee, HourlyEmployee

Vehicle Car, Truck

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

Object

List
Any class that

you create
String Vector

All classes in Java are

derived from Object

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 Inheritance: "is-a" relationship

 A derived class "is-a" type of the base
class.

 "A dog is an animal"

 Base class are more general than derived
classes.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 All of the members of SalaryEmployee are also
members of Employee.

 This means that we can call methods of the base
class (Employee) even though we didn’t define
them inside the derived class (SalaryEmployee).

SalaryEmployee se = new SalaryEmployee(100000);

se.SetId(23);

 SetId() is a member of the base class so we can
call it from the derived class

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 Does the derived class have access to the
private members of the base class?

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 No. The derived class does NOT have
access to the private members of the
base class.

 What if we wanted to give derived classes
access to members of the base class.

 Declare the members of the base class as
"protected".

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 New access modifier: protected.

 Protected can be accessed by derived
classes

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

public class Employee

{

protected int m_Id; // Using protected not private

public Employee(int newId)

{ m_Id = newId; }

public int GetId()

{ return m_Id; }

public void SetId(int newId)

{ m_Id = newId; }

}

© 2023 Arthur Hoskey. All
rights reserved.

Missing Access Modifier

 What access is used on a member
variable if the access modifier is missing?

© 2023 Arthur Hoskey. All
rights reserved.

Missing Access Modifier

 What access is used on a member variable if the
access modifier is missing?

ANSWER

Package access.

If there is no access modifier, then that member is
accessible from anywhere in the package (not
outside of the package).

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 How do constructors work with
inheritance?

 The derived class constructor calls the
base class constructor.

 Use the keyword "super" to call the base
class or superclass constructor.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

public class Employee

{

protected int m_Id;

public Employee(int newId) // Base class constructor

{ m_Id = newId; } // sets id member.

public int GetId()

{ return m_Id; }

public void SetId(int newId)

{ m_Id = newId; }

}

© 2023 Arthur Hoskey. All
rights reserved.

super

public Manager extends Employee

{

private String m_SecretaryName;

public Manager(int newId, String newSec)

{

super(newId); // Calls base class or superclass
// constructor.

m_SecretaryName = newSec;

}

// Assume other methods are declared here…

}

Call to the base

class constructor

must be the first line

© 2023 Arthur Hoskey. All
rights reserved.

super

public SalaryEmployee extends Employee

{

private double m_YearlySalary;

public SalaryEmployee(int newId, double newSal)

{

super(newId); // Calls base class or superclass
// constructor.

m_YearlySalary = newSal;

}

// Assume other methods are declared here…

}

© 2023 Arthur Hoskey. All
rights reserved.

Implict Base Constructor Call

 If the call to the base class constructor is missing then an implicit
call will be made to the default base class constructor BEFORE the
derived class constructor runs. For example:

class B {

public B() {

System.out.println("B running…");

}

}

class D extends B {

public D() {

System.out.println("D running…");

}

}

public static void main(String[] args) { D d = new D(); }

Output

B running…

D running…

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 Note: All reference types in Java are
derived from the predefined class Object
(Object is the base class of all classes in
Java).

 A String "is an" object.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 You can place an instance of a derived
type into an instance of a base type.

 You CANNOT put an instance of a base
type into a derived type.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 Suppose we have an Employee and a
Manager.

Employee e;

Manager m;

// Assume that new is called for both…

e = m; // This is allowed.

m = e; // This is NOT allowed!!!

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

Employee e;

Manager m;

// Assume that new is called for both…

e = m; // Assign Manager to Employee

 This is OK because a Manager has ALL possible
functionality of an Employee.

 For example:

e.SetId(111); // Employee knows SetId()

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

Employee e;

Manager m;

// Assume that new is called for both…

m = e; // Assign Employee to Manager

 This is NOT OK because a Manager has
functionality that an Employee does NOT have.

 For example:

m.SetSecretaryName(“Jane”);

 The object that m is pointing to is an Employee.
No SetSectretaryName() or m_SectretaryName.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

Employee
int m_Id
SetId()
GetId()

Manager
String m_SectretaryName

GetSecretaryName()
SetSecretaryName()

Employee
int m_Id
SetId()
GetId()

e
GetId()
SetId()

M
GetId()
SetId()

GetSecretaryName()
SetSecretaryName()

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 e = m; // OK. Underlying object has
GetId() and SetId()

Employee
int m_Id
SetId()
GetId()

e
GetId()
SetId()

M
GetId()
SetId()

GetSecretaryName()
SetSecretaryName()

Manager
String m_SectretaryName

GetSecretaryName()
SetSecretaryName()

Employee
int m_Id
SetId()
GetId()

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance

 m = e; // BAD. Underlying object doesn’t
know GetSecretaryName() etc…

Employee
int m_Id
SetId()
GetId()

e
GetId()
SetId()

M
GetId()
SetId()

GetSecretaryName()
SetSecretaryName()

Manager
String m_SectretaryName

GetSecretaryName()
SetSecretaryName()

Employee
int m_Id
SetId()
GetId()

© 2023 Arthur Hoskey. All
rights reserved.

BAD

Inheritance

 Java collection classes are all defined to accept
objects.

 Since every reference type directly or indirectly
inherits from the Object class then they can all
be used.

 Collections: List, Vector

Any reference type (even user defined) can be
stored in a List or Vector.

© 2023 Arthur Hoskey. All
rights reserved.

Inheritance - REVIEW

 What is inheritance?

 A form of code reuse.

 Create a new class from an existing class.

 Use an existing class as a "base" for the new
class.

 The new class adds on to the existing class.

© 2023 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: General Class Topics
	Slide 3: finalize()
	Slide 4: Aggregation
	Slide 5: Aggregation
	Slide 6: Aggregation
	Slide 7: Aggregation
	Slide 8: Composition
	Slide 9: Aggregation vs Composition
	Slide 10: Inheritance
	Slide 11: Employee Class
	Slide 12: Inheritance
	Slide 13: Inheritance
	Slide 14: Inheritance
	Slide 15: Inheritance
	Slide 16: Inheritance
	Slide 17: Inheritance
	Slide 18: Inheritance
	Slide 19: Inheritance
	Slide 20: Inheritance
	Slide 21: Inheritance
	Slide 22: Inheritance
	Slide 23: Inheritance
	Slide 24: Example Problem
	Slide 25: Answers
	Slide 26: Inheritance
	Slide 27: Inheritance
	Slide 28: Inheritance
	Slide 29: Inheritance
	Slide 30: Inheritance
	Slide 31: Inheritance
	Slide 32: Inheritance
	Slide 33: Missing Access Modifier
	Slide 34: Missing Access Modifier
	Slide 35: Inheritance
	Slide 36: Inheritance
	Slide 37: super
	Slide 38: super
	Slide 39: Implict Base Constructor Call
	Slide 40: Inheritance
	Slide 41: Inheritance
	Slide 42: Inheritance
	Slide 43: Inheritance
	Slide 44: Inheritance
	Slide 45: Inheritance
	Slide 46: Inheritance
	Slide 47: Inheritance
	Slide 48: Inheritance
	Slide 49: Inheritance - REVIEW
	Slide 50: End of Slides

